Fractal Characteristics of Newton ' s Method onPolynomialsM
نویسندگان
چکیده
In this report, we present a simple geometric generation principle for the fractal that is obtained when applying Newton's method to nd the roots of a general complex polynomial with real coee-cients. For the case of symmetric polynomials z ? 1, the generation mechanism is derived from rst principles. We discuss the case of a general cubic and are able to give a description of the arising fractal structure depending on the coeecients of the cubic. Special cases are analysed and their characteristics, including scale factors and an approximate fractal dimension, are derived. The theoretical results are connrmed via computational experiments. An application of the theory in turbulence modelling is presented.
منابع مشابه
Geostatistical and multi-fractal modeling of geological and geophysical characteristics in Ghalandar Skarn-Porphyry Cu Deposit, Iran
This work aims at figuring out the spatial relationships between the geophysical and geological models in a case study pertaining to copper-sulfide mineralization through an integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, which is located in NW Iran, is selected for this research work. Three geophysical surveys of direct current electrical resistivity and in...
متن کاملA Critique on Power Spectrum – Area Fractal Method for Geochemical Anomaly Mapping
Power spectrum – area fractal (S-A fractal) method has been frequently applied for geochemical anomaly mapping. Some researchers have performed this method for separation of geochemical anomaly, background and noise and have delineated their distribution maps. In this research, surface geochemical data of Zafarghand Cu-Mo mineralization area have been utilized and some defects of S-A fractal me...
متن کاملOn The Behavior of Malaysian Equities: Fractal Analysis Approach
Fractal analyzing of continuous processes have recently emerged in literatures in various domains. Existence of long memory in many processes including financial time series have been evidenced via different methodologies in many literatures in past decade, which has inspired many recent literatures on quantifying the fractional Brownian motion (fBm) characteristics of financial time series. Th...
متن کاملScaling and Fractal Concepts in Saturated Hydraulic Conductivity: Comparison of Some Models
Measurement of soil saturated hydraulic conductivity, Ks, is normally affected by flow patterns such as macro pore; however, most current techniques do not differentiate flow types, causing major problems in describing water and chemical flows within the soil matrix. This study compares eight models for scaling Ks and predicted matrix and macro pore Ks, using a database composed of 50 datasets...
متن کاملThe Application of fractal dimension and morphometric properties of drainage networks in the analysis of formation sensibility in arid areas (Case Study, Yazd-Ardakan Basin)
Introduction: Many natural phenomena have many variables that make it difficult to find relationships between them using common mathematical methods. This problem, along with the impossibility of measuring all elements of nature, has led to a major evolution in the way of understanding and explaining phenomena. In this way, one can use the fractal geometry with the theory that many natural phen...
متن کامل